| Vulnerabilities | |||||
|---|---|---|---|---|---|
| Version | Suggest | Low | Medium | High | Critical |
| 3.12.0 | 0 | 0 | 0 | 0 | 0 |
| 3.11.3 | 0 | 0 | 2 | 0 | 0 |
| 3.11.2 | 0 | 0 | 4 | 0 | 0 |
| 3.11.1 | 0 | 0 | 4 | 0 | 0 |
| 3.11.0 | 0 | 0 | 4 | 0 | 0 |
| 3.10.0 | 0 | 0 | 5 | 0 | 0 |
| 3.9.2 | 0 | 0 | 5 | 0 | 0 |
| 3.9.1 | 0 | 0 | 5 | 0 | 0 |
| 3.9.0 | 0 | 0 | 5 | 0 | 0 |
| 3.8.0 | 0 | 0 | 6 | 0 | 0 |
| 3.7.0 | 0 | 0 | 7 | 0 | 0 |
| 3.6.0 | 0 | 0 | 7 | 0 | 0 |
| 3.5.0 | 0 | 0 | 7 | 0 | 0 |
| 3.4.1 | 0 | 0 | 7 | 0 | 0 |
| 3.4.0 | 0 | 0 | 7 | 0 | 0 |
| 3.3.3 | 0 | 0 | 7 | 0 | 0 |
| 3.3.2 | 0 | 0 | 7 | 0 | 0 |
| 3.3.1 | 0 | 0 | 7 | 0 | 0 |
| 3.3.0 | 0 | 0 | 7 | 0 | 0 |
| 3.2.1 | 0 | 0 | 7 | 0 | 0 |
| 3.2.0 | 0 | 0 | 7 | 0 | 0 |
| 3.1.1 | 0 | 0 | 7 | 0 | 0 |
| 3.1.0 | 0 | 0 | 7 | 0 | 0 |
| 3.0.5 | 0 | 0 | 7 | 0 | 0 |
| 3.0.4 | 0 | 0 | 7 | 0 | 0 |
| 3.0.3 | 0 | 0 | 7 | 0 | 0 |
| 3.0.2 | 0 | 0 | 7 | 0 | 0 |
| 3.0.1 | 0 | 0 | 7 | 0 | 0 |
| 3.0.0 | 0 | 0 | 7 | 0 | 0 |
| 2.15.0rc1 | 0 | 0 | 5 | 0 | 0 |
| 2.15.0rc0 | 0 | 0 | 5 | 0 | 0 |
| 2.15.0 | 0 | 0 | 5 | 0 | 0 |
| 2.14.0rc0 | 0 | 0 | 5 | 0 | 0 |
| 2.14.0 | 0 | 0 | 5 | 0 | 0 |
| 2.13.1 | 0 | 0 | 5 | 0 | 0 |
| 2.13.1rc1 | 0 | 0 | 5 | 0 | 0 |
| 2.13.1rc0 | 0 | 0 | 5 | 0 | 0 |
| 2.12.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.12.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.12.0 | 0 | 0 | 6 | 0 | 0 |
| 2.11.0rc3 | 0 | 0 | 6 | 0 | 0 |
| 2.11.0rc2 | 0 | 0 | 6 | 0 | 0 |
| 2.11.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.11.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.11.0 | 0 | 0 | 6 | 0 | 0 |
| 2.10.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.10.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.10.0 | 0 | 0 | 6 | 0 | 0 |
| 2.9.0rc2 | 0 | 0 | 6 | 0 | 0 |
| 2.9.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.9.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.9.0 | 0 | 0 | 6 | 0 | 0 |
| 2.8.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.8.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.8.0 | 0 | 0 | 6 | 0 | 0 |
| 2.7.0rc2 | 0 | 0 | 6 | 0 | 0 |
| 2.7.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.7.0 | 0 | 0 | 6 | 0 | 0 |
| 2.6.0rc3 | 0 | 0 | 6 | 0 | 0 |
| 2.6.0rc2 | 0 | 0 | 6 | 0 | 0 |
| 2.6.0rc1 | 0 | 0 | 6 | 0 | 0 |
| 2.6.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.6.0 | 0 | 0 | 6 | 0 | 0 |
| 2.5.0rc0 | 0 | 0 | 6 | 0 | 0 |
| 2.4.3 | 0 | 0 | 6 | 0 | 0 |
| 2.4.2 | 0 | 0 | 6 | 0 | 0 |
| 2.4.1 | 0 | 0 | 6 | 0 | 0 |
| 2.4.0 | 0 | 0 | 6 | 0 | 0 |
| 2.3.1 | 0 | 0 | 6 | 0 | 0 |
| 2.3.0 | 0 | 0 | 6 | 0 | 0 |
| 2.2.5 | 0 | 0 | 6 | 0 | 0 |
| 2.2.4 | 0 | 0 | 6 | 0 | 0 |
| 2.2.3 | 0 | 0 | 6 | 0 | 0 |
| 2.2.2 | 0 | 0 | 6 | 0 | 0 |
| 2.2.1 | 0 | 0 | 6 | 0 | 0 |
| 2.2.0 | 0 | 0 | 6 | 0 | 0 |
| 2.1.6 | 0 | 0 | 6 | 0 | 0 |
| 2.1.5 | 0 | 0 | 6 | 0 | 0 |
| 2.1.4 | 0 | 0 | 6 | 0 | 0 |
| 2.1.3 | 0 | 0 | 6 | 0 | 0 |
| 2.1.2 | 0 | 0 | 6 | 0 | 0 |
| 2.1.1 | 0 | 0 | 6 | 0 | 0 |
| 2.1.0 | 0 | 0 | 6 | 0 | 0 |
| 2.0.9 | 0 | 0 | 6 | 0 | 0 |
| 2.0.8 | 0 | 0 | 6 | 0 | 0 |
| 2.0.7 | 0 | 0 | 6 | 0 | 0 |
| 2.0.6 | 0 | 0 | 6 | 0 | 0 |
| 2.0.5 | 0 | 0 | 6 | 0 | 0 |
| 2.0.4 | 0 | 0 | 6 | 0 | 0 |
| 2.0.3 | 0 | 0 | 6 | 0 | 0 |
| 2.0.2 | 0 | 0 | 6 | 0 | 0 |
| 2.0.1 | 0 | 0 | 6 | 0 | 0 |
| 2.0.0 | 0 | 0 | 6 | 0 | 0 |
| 1.2.2 | 0 | 0 | 6 | 0 | 0 |
| 1.2.1 | 0 | 0 | 6 | 0 | 0 |
| 1.2.0 | 0 | 0 | 6 | 0 | 0 |
| 1.1.2 | 0 | 0 | 6 | 0 | 0 |
| 1.1.1 | 0 | 0 | 6 | 0 | 0 |
| 1.1.0 | 0 | 0 | 6 | 0 | 0 |
| 1.0.8 | 0 | 0 | 6 | 0 | 0 |
| 1.0.7 | 0 | 0 | 6 | 0 | 0 |
| 1.0.6 | 0 | 0 | 6 | 0 | 0 |
| 1.0.5 | 0 | 0 | 6 | 0 | 0 |
| 1.0.4 | 0 | 0 | 6 | 0 | 0 |
| 1.0.3 | 0 | 0 | 6 | 0 | 0 |
| 1.0.2 | 0 | 0 | 6 | 0 | 0 |
| 1.0.1 | 0 | 0 | 6 | 0 | 0 |
| 1.0.0 | 0 | 0 | 6 | 0 | 0 |
| 0.3.3 | 0 | 0 | 6 | 0 | 0 |
| 0.3.2 | 0 | 0 | 6 | 0 | 0 |
| 0.3.1 | 0 | 0 | 6 | 0 | 0 |
| 0.3.0 | 0 | 0 | 6 | 0 | 0 |
| 0.2.0 | 0 | 0 | 6 | 0 | 0 |
3.12.0 - This version is safe to use because it has no known security vulnerabilities at this time. Find out if your coding project uses this component and get notified of any reported security vulnerabilities with Meterian-X Open Source Security Platform
Maintain your licence declarations and avoid unwanted licences to protect your IP the way you intended.
Apache-2.0 - Apache License 2.0Keras 3 is a multi-backend deep learning framework, with support for JAX, TensorFlow, PyTorch, and OpenVINO (for inference-only). Effortlessly build and train models for computer vision, natural language processing, audio processing, timeseries forecasting, recommender systems, etc.
Join nearly three million developers, from burgeoning startups to global enterprises, in harnessing the power of Keras 3.
Keras 3 is available on PyPI as keras. Note that Keras 2 remains available as the tf-keras package.
keras:pip install keras --upgrade
To use keras, you should also install the backend of choice: tensorflow, jax, or torch. Additionally,
The openvino backend is available with support for model inference only.
Keras 3 is compatible with Linux and macOS systems. For Windows users, we recommend using WSL2 to run Keras. To install a local development version:
pip install -r requirements.txt
python pip_build.py --install
keras_export public APIs:./shell/api_gen.sh
The following table lists the minimum supported versions of each backend for the latest stable release of Keras (v3.x):
| Backend | Minimum Supported Version |
|---|---|
| TensorFlow | 2.16.1 |
| JAX | 0.4.20 |
| PyTorch | 2.1.0 |
| OpenVINO | 2025.3.0 |
The requirements.txt file will install a CPU-only version of TensorFlow, JAX, and PyTorch. For GPU support, we also
provide a separate requirements-{backend}-cuda.txt for TensorFlow, JAX, and PyTorch. These install all CUDA
dependencies via pip and expect a NVIDIA driver to be pre-installed. We recommend a clean Python environment for each
backend to avoid CUDA version mismatches. As an example, here is how to create a JAX GPU environment with conda:
conda create -y -n keras-jax python=3.10
conda activate keras-jax
pip install -r requirements-jax-cuda.txt
python pip_build.py --installYou can export the environment variable KERAS_BACKEND or you can edit your local config file at ~/.keras/keras.json
to configure your backend. Available backend options are: "tensorflow", "jax", "torch", "openvino". Example:
export KERAS_BACKEND="jax"
In Colab, you can do:
import os
os.environ["KERAS_BACKEND"] = "jax"
import kerasNote: The backend must be configured before importing keras, and the backend cannot be changed after
the package has been imported.
Note: The OpenVINO backend is an inference-only backend, meaning it is designed only for running model
predictions using model.predict() method.
Keras 3 is intended to work as a drop-in replacement for tf.keras (when using the TensorFlow backend). Just take your
existing tf.keras code, make sure that your calls to model.save() are using the up-to-date .keras format, and you're
done.
If your tf.keras model does not include custom components, you can start running it on top of JAX or PyTorch immediately.
If it does include custom components (e.g. custom layers or a custom train_step()), it is usually possible to convert it
to a backend-agnostic implementation in just a few minutes.
In addition, Keras models can consume datasets in any format, regardless of the backend you're using:
you can train your models with your existing tf.data.Dataset pipelines or PyTorch DataLoaders.
Module or as part of a JAX-native model function.Read more in the Keras 3 release announcement.