autoray

Abstract your array operations.

Latest version: 0.8.0 registry icon
Maintenance score
100
Safety score
100
Popularity score
9
Check your open source dependency risks. Get immediate insight about security, stability and licensing risks.
Security
  Vulnerabilities
Version Suggest Low Medium High Critical
0.8.0 0 0 0 0 0
0.7.2 0 0 0 0 0
0.7.1 0 0 0 0 0
0.7.0 0 0 0 0 0
0.6.12 0 0 0 0 0
0.6.11 0 0 0 0 0
0.6.10 0 0 0 0 0
0.6.9 0 0 0 0 0
0.6.8 0 0 0 0 0
0.6.7 0 0 0 0 0
0.6.6 0 0 0 0 0
0.6.5 0 0 0 0 0
0.6.4 0 0 0 0 0
0.6.3 0 0 0 0 0
0.6.1 0 0 0 0 0
0.6.0 0 0 0 0 0
0.5.3 0 0 0 0 0
0.5.2 0 0 0 0 0
0.5.1 0 0 0 0 0
0.5.0 0 0 0 0 0
0.3.2 0 0 0 0 0
0.3.1 0 0 0 0 0
0.2.5 0 0 0 0 0
0.2.4 0 0 0 0 0
0.2.3 0 0 0 0 0
0.2.2 0 0 0 0 0
0.2.1 0 0 0 0 0
0.2.0 0 0 0 0 0
0.1.1 0 0 0 0 0
0.1.0 0 0 0 0 0

Stability
Latest release:

0.8.0 - This version is safe to use because it has no known security vulnerabilities at this time. Find out if your coding project uses this component and get notified of any reported security vulnerabilities with Meterian-X Open Source Security Platform

Licensing

Maintain your licence declarations and avoid unwanted licences to protect your IP the way you intended.

Apache-1.0   -   Apache License 1.0

Not a wildcard

Not proprietary

OSI Compliant



autoray-header

tests codecov Codacy Badge Docs PyPI Anaconda-Server Badge

autoray is a lightweight python AUTOmatic-arRAY library for abstracting your tensor operations. Primarily it provides an automatic dispatch mechanism that means you can write backend agnostic code that works for:

Beyond that, abstracting the array interface allows you to:

Basic usage

The main function of autoray is do, which takes a function name followed by *args and **kwargs, and automatically looks up (and caches) the correct function to match the equivalent numpy call:

import autoray as ar

def noised_svd(x):
    # automatic dispatch based on supplied array
    U, s, VH = ar.do('linalg.svd', x)

    # automatic dispatch based on different array
    sn = s + 0.1 * ar.do('random.normal', size=ar.shape(s), like=s)

    # automatic dispatch for multiple arrays for certain functions
    return ar.do('einsum', 'ij,j,jk->ik', U, sn, VH)

# explicit backend given by string
x = ar.do('random.uniform', size=(100, 100), like="torch")

# this function now works for any backend
y = noised_svd(x)

# explicit inference of backend from array
ar.infer_backend(y)
# 'torch'

If you don't like the explicit do syntax, or simply want a drop-in replacement for existing code, you can also import the autoray.numpy module:

from autoray import numpy as np

# set a temporary default backend
with ar.backend_like('cupy'):
    z = np.ones((3, 4), dtype='float32')

np.exp(z)
# array([[2.7182817, 2.7182817, 2.7182817, 2.7182817],
#        [2.7182817, 2.7182817, 2.7182817, 2.7182817],
#        [2.7182817, 2.7182817, 2.7182817, 2.7182817]], dtype=float32)

Alternatively you can use autoray.get_namespace to get a backend specific (with optional default device and dtype) namespace object, (c.f. the Python Array Api):

xp = ar.get_namespace(z)
xp.einsum("ii->i", z)

Custom backends and functions can be dynamically registered with:

The main documentation is available at autoray.readthedocs.io.