0math

Latest version: 0.1.6 registry icon
Maintenance score
0
Safety score
0
Popularity score
0
Check your open source dependency risks. Get immediate insight about security, stability and licensing risks.
Security
  Vulnerabilities
Version Suggest Low Medium High Critical
0.1.6 0 0 0 0 0
0.1.3 0 0 0 0 0
0.1.2 0 0 0 0 0
0.1.1 0 0 0 0 0
0.1.0 0 0 0 0 0
0.0.3 0 0 0 0 0
0.0.2 0 0 0 0 0
0.0.1 0 0 0 0 0

Stability
Latest release:

0.1.6 - This version may not be safe as it has not been updated for a long time. Find out if your coding project uses this component and get notified of any reported security vulnerabilities with Meterian-X Open Source Security Platform

Licensing

Maintain your licence declarations and avoid unwanted licences to protect your IP the way you intended.

MIT   -   MIT License

Not a wildcard

Not proprietary

OSI Compliant



0math

GitHub license npm version

使用

npm install 0math -D

期望值, 平均, 众数, 中位数

import { add } from '0math'

$(x^2 + x^y )^{x^y}+ x_1^2= y_1 - y_2^{x_1-y_1^2}$

$\frac{1-x}{y+1}$

$x\over{x+y}$

$\sqrt[3]{4}$

$\sqrt{9}$

$f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon {1,2,3}$

$(\sqrt{1 \over 2})^2$

$\left(\sqrt{1 \over 2}\right)^2$

$\frac{du}{dx}|{x=0}$

$\left. \frac{du}{dx} \right|_{x=0}$

$y :\begin{cases} x+y=1\ x-y = 0 \end{cases}$

向量: $\vec{a}$

例 : $\vec a \cdot \vec b = 1$

定积分: $\int_0^1x^2dx$

极限: $\lim_{n\rightarrow+\infty}$

符号:$\lim_{n\rightarrow+\infty}$,示例公式:$\lim_{n\rightarrow+\infty}\frac{1}{n}$

$f(x_1,x_2,\ldots,x_n) = \left({1 \over x_1}\right)^2+\left({1 \over x_2}\right)^2+\cdots+\left({1 \over x_n}\right)^2$

累加$\sum_1^n$, 累乘$\prod_{i=0}^n$

数学符号

三角函数

定积分

集合

对数

希腊